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ABSTRACT
Recent advancements in the domain of pervasive computing have
seen the incorporation of sensor-based Deep Learning algorithms
in Human Activity Recognition (HAR). Contemporary Deep Learn-
ing models are engineered to alleviate the difficulties posed by con-
ventional Machine Learning algorithms which require extensive do-
main knowledge to obtain heuristic hand-crafted features. Upon train-
ing and deployment of these Deep Learning models on ubiquitous
mobile/embedded devices, it must be ensured that the model ad-
heres to their computation andmemory limitations, in addition to ad-
dressing the various mobile- and user-based heterogeneities preva-
lent in actuality. To handle this, we propose HARNet - a resource-
efficient and computationally viable network to enable on-line Incre-
mental Learning and User Adaptability as a mitigation technique for
anomalous user behavior in HAR. Heterogeneity Activity Recog-
nition Dataset was used to evaluate HARNet and other proposed
variants by utilizing acceleration data acquired from diverse mobile
platforms across three different modes from a practical application
perspective.We performDecimation as aDown-sampling technique
for generalizing sampling frequencies across mobile devices, and
Discrete Wavelet Transform for preserving information across fre-
quency and time. Systematic evaluation of HARNet on User Adapt-
ability yields an increase in accuracy by ∼35% by leveraging the
model’s capability to extract discriminative features across activi-
ties in heterogeneous environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile devices;
Empirical studies in ubiquitous and mobile computing; • Com-
puting methodologies→ Neural networks; Ensemble methods;
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1 INTRODUCTION
The ubiquitous proliferation of low-cost mobile devices with embed-
ded sensors has spawned a growing research in extracting contextual
information from sensor data, particularly for HAR, owing to its ap-
plications in healthcare, physical activity monitoring, fitness track-
ing, behavioral analysis, etc. [3][16]. The contemporary evolution
of Machine Learning has provided a convenient way for exploiting
these raw sensor data to abstract meaningful information. However,
employing Machine Learning algorithms generally requires exten-
sive domain knowledge for feature engineering, which is often lim-
ited by the competency of the human designing the model.
Recently, the emergence of sophisticated Deep Learning tech-

niques has greatly alleviated the problem of crafting shallow fea-
tures that have questionable generalizability. Powerful Deep Learn-
ing methods aid in automatic extraction of discriminative features
by exploring hidden correlations within and between data, thereby
capturing intricate details that are crucial for achieving high-level
classification efficacy and robustness. However, learning complex
features generally involves trainingmodels that require extensive re-
sources, thereby making them unfriendly for real-world deployment
on lightweight wearables. Furthermore, the device- and user-related
diversities, such as different sensor types, device orientations, var-
ied user-behavior, CPU loads etc., oftentimes hamper the real-world
performance of the model [17]. This brings about a growing neces-
sity for developing resource-friendly and robust HAR systems that
leverage mutual interaction between the model and data, optimized
to achieve state-of-the-art accuracies.
In this paper, we intend to address the following two prominent

challenges in HAR.

On-device Incremental Learning
Most deep learningHAR systems are often trained on remote servers
off-line or via cloud. To facilitate User Adaptability through Incre-
mental Learning - a technique to enhance the performance of these

https://doi.org/10.1145/3212725.3212728
https://doi.org/10.1145/3212725.3212728


EMDL’18, June 15, 2018, Munich, Germany Prahalathan Sundaramoorthy et al.

models by catering to each user independently, the raw inertial data
needs to be transmitted to the servers from the device. However,
communication between the server and device is often compromised
due to latency issues (Round Trip Time taken between the server
and device), and overheads in synchronization of data. One possible
approach to achieve User Adaptability is to ensure training can be
performed on the resource-constrained mobile/embedded systems,
provided that the model is optimized.

Heterogeneity
When aHAR system is tested onmultiple smartphones in real-world,
the performance across various users is generally sub-optimal when
compared to its simulated environment. This is due to the presence
of various mobile-sensing heterogeneities prevalent during deploy-
ment. These heterogeneities predominantly include varying sampling
rates, sampling rate instability due to different OS types, CPU load
conditions and varied user characteristics among others [17].
In this paper, we focus on systematic minimization of resources

to develop a generic HAR model in heterogeneous conditions that
can be effectively trained and deployed on aMobile/Embedded plat-
form, whilst achieving on-par accuracies compared to state-of-the-
art recognition models.

2 RELATEDWORK
Modeling Deep Learning architectures for HAR has been an ex-
tensive area of research. Many researchers predominantly use Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Restricted Boltzmann Machines (RBMs) and Deep Belief
Networks (DBNs) or a combination of these to build their recogni-
tion models [18].
Jiang et al. [8] effectively used Deep CNN to learn local features

across dimensions from a synthesized activity image. Although this
approach yields appreciable results, creating and analyzing an ac-
tivity image is laborious and memory consuming, which might not
be well-suited for deployment on mobile and embedded platforms.
Ronao et al. [15] successfully demonstrated the usage of two-dimens-
ional CNN for efficient classification of activities. However, the
model was tested on a dataset that contains data from a single smart-
phone, thereby failing to showcase its generalizing capabilities across
devices. Ravi et al. [14] performed temporal convolutions on Short-
Time Fourier Transform (STFT) spectrogram of the input signals.
Though the system was deployed on low-cost wearable devices, its
capability to perform well for unseen users is not pronounced.
To learn hierarchial features, Guan et al. [4] proposed an ensem-

ble of LSTM learners for building a robust recognition system. RBMs
and multi-layer RBMs [13] have also been used to capture local and
multi-modal interactions in HAR.Ordóñez et al. [12] andHammerla
et al. [5] exploit their own convolutional and recurrent network ar-
chitectures, but fail to illustrate the performance of the same under
real-world heterogeneous environments. Implementing hybrid mod-
els using a combination of CNNs and RNNs has been proposed
by Yao et al. [19] in DeepSense, which fuses data from multiple
sensor modalities while also incorporating temporal relations. Al-
though these works achieve impressive results in terms of accuracy
and classification time, the feasibility of incremental learning seems
to be debatable.

The rest of the paper is organized as follows: Section 3 and Sec-
tion 4 discuss the dataset and various preprocessing steps to achieve
dataset reduction for reducing memory overhead in devices. We elu-
cidate our proposed model in Section 5, followed by systematic
evaluation and demonstration under heterogeneous and resource-
constrained scenarios in Sections 6 and 7.

3 DATASET
We utilize the Heterogeneity dataset (DH ) proposed by Allan et al.
[17] to design our model. DH consists of inertial values recorded
from accelerometer and gyroscope present in eight smartphones acro-
ss nine users performing six daily activities (Table 1). To ensure uni-
formity, each activity was performed for five minutes by all users
across all phones. The real-world sensing diversities are reflected
by data from different phones operating with varying Sampling Fre-
quencies (FS , ranging from 50-200 Hz) in DH .

Table 1: Heterogeneity Dataset (DH ) characterized by their re-
spective attributes

Activities Devices FS Users
[’Biking’, ’Sitting’,

’Standing’,
’Walking’,
’StairsUp’,

’StairsDown’]

Nexus 4
Samsung S3

Samsung S3 Mini
Samsung S+

200
150
100
50

[a, b, c,
d, e, f,
g, h, i]

4 DATASET PREPROCESSING
In order to handle the varying sampling frequencies of different de-
vices and to obtain a rich yet sparse representation of the signal com-
ponents, we perform the following preprocessing steps.

4.1 Windowing and Decimation
We initially segment raw inertial data into non-overlapping two-
second activitywindows (wa ). These segmented chunks of data have
non-uniform lengths due to varying sampling frequencies of the de-
vices (Fs ). This disparity may impede the performance of the model,
particularly when Fs of smartphones are not identical during training
and testing. To handle this issue,Up-sampling orDown-sampling of
data can be performed to ensure that each window wa has a fixed
size. Up-sampling is likely to induce noise in the data and increase
memory requirements [17]. Hence, a better approach would be to
down-sample the signals to a common sampling frequency, as the
characteristics of the input signals are likely to be retained, while
resulting in data size reduction.
The authors performDecimation - a technique that down-samples

a signal, by applying an 8th order Chebyshev type-I filter without
any phase shift. In DH , we choose the lowest Fs - 50 Hz as the
common sampling frequency for down-sampling. Decimation is per-
formed on all signals from mobile devices whose Fs is greater than
50 Hz, thereby ensuring consistency in size of each window wa .
Decimation results in data reduction upto 75% for phones with high-
est Fs - 200Hz.
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4.2 Discrete Wavelet Transform
A better representation of the raw inertial signals can be obtained by
capturing both temporal and frequency information, which retain lo-
cally well-defined temporal characteristics in the frequency domain
[11].
DWT convolves the incoming signal x(n) with a wavelet ψ by

using multiple filter banks to achieve decomposition into high- and
low-frequency components. These components are represented by
Detail (CD ) and Approximation (CA) coefficients. By discardingCD
and utilizingCA, we get a smoothened version of x(n) [2]. This pro-
cess yields a sparse representation of the signal, thereby compress-
ing the size of the data (∼50%).

Figure 1: Inertial accelerometer signals of the three axes before
and after DWT

From Figure 1, we can visually interpret the enhanced correlation
between inertialд-values of the three axes after performing DWT by
utilizing the temporal and frequency information captured.

5 MODEL
HAR in real-time requires identification of discriminative sets of
features for effective classification. Deep Learning facilitates auto-
matic extraction of such distinctive features, that otherwise do not
generalize across datasets. Comprehensive analysis of correlations
across various axes is essential to learn such features efficiently.
Hence, in this paper, we study various architectures to extract the
intra-axial and inter-axial feature dependencies.

INTRA-AXIAL DEPENDENCIES
Each activity windowwa is constituted of {wX

a ,w
Y
a ,w

Z
a } denoting

the input vectors across axes X, Y and Z respectively. These vec-
tors are represented by the frequency sub-bands of CA. To extract
the local information within each vector in {wX

a , w
Y
a ,w

Z
a }, we sys-

tematically evaluate the following intra-axial variants as shown in
Figure 2.

Conv-1D. Convolutional Neural Networks (CNNs) are used as
powerful feature learning tools in many Deep Learning classifica-
tion tasks. Each convolutional kernel analyzes and extracts local
characteristics within each input axis. We combine the learned fea-
tures of all axes for achieving distinctive representation of the in-
coming sensor signal for classification.
The intra-axial CNN takes an input vector at the first layer LC1

from {wX
a ,w

Y
a ,w

Z
a }. Each layer LCn provides a feature-map fLCn as

Figure 2: Model Architecture Variants

the input for every subsequent layer LCn+1 in the network. Each fea-
ture map is obtained using convolutional filters applied throughout
the feature map fLCn and is provided as input to the hidden layer
LCn+1.
In this variant, we utilize a two-layer stacked convolutional net-

work with a receptive field size (kernel size) of 2. To regularize each
mini-batch and reduce the internal covariate shift, a Batch Normal-
ization layer is also used in each stack [7]. Each batch-norm layer is
followed by a Max-pooling layer of pool size 2x2.

LSTM. The Long Short-Term Memory (LSTM) units are one of
the extended variants for vanilla recurrent networks. LSTMs have
proven to be successful in capturing pattern information in time-
series data, as they have the potential to model dynamic temporal
behavior [6].
Recurrent units of the first layer utilize the input vectors {wX

a ,w
Y
a ,

wZ
a } to learn the local temporal characteristics. The input of the each

following hidden recurrent layer LRn is of the form d =
∪N
i=0 di ,

where N is the number of units of the previous recurrent layer LRn−1.
These sequences will be modeled for each timestep dt by remem-
bering the states for the previous dt−1 timesteps, ∀t ∈ [0,N ] .
We use a two-layer stacked LSTM network in this variant, com-

prising of 32 and 20 output cells each. A Hyperbolic Tangent (tanh)
activation function is used for the same.

LSTM→ Conv-1D. By using LSTMs for modeling complex tem-
poral relations and 1-D convolutions for extracting the most salient
features from these functions pertaining to each axis, we could ob-
tain a well-learned representation of the input signal.
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Table 2: Total parameters, Accuracies, F1-Scores and Time taken for Classification of a single window for DH across all models in
modeMU

Model Params Accuracy F1-Score Time (in ms)
HAR-CNet 31,806 95.68 0.9619 10.9
HAR-LNet 29,910 95.42 0.9573 850.2
HAR-LCNet 40,094 96.79 0.9651 68.9

This proposed framework utilizes a combination of layers from
both LSTM and Conv-1D. Inputs {wX

a ,w
Y
a ,w

Z
a } are initially fed

into a recurrent network from which a modeled sequence fLRn is ob-
tained, which is further used to generate feature maps using 1-D con-
volutions. The Convolutional layerLCn is stacked over the final recur-
rent layer LRn , and takes the input fLRn to provide a feature-extracted
vector fLCn per axis.

In this variant, we propose a one-dimensional convolutional layer
comprising of 8 filters and a kernel size of 2 over an LSTM layer
similar to the aforementioned variant, with a Batch Normalization
regularizer and a 2x2 pooling layer.

INTER-AXIAL DEPENDENCIES
A two-dimensional CNN can effectively learn distinctive character-
istics across spatial dimensions [10]. We aim to capture the interac-
tions between data from the three axes, using convolutional layers.
The outputs of the intra-axial models for all three input vectors

{wX
a ,w

Y
a ,w

Z
a } are concatenated to form a feature matrix F , which

provides a sophisticated representation from which inter-axial de-
pendencies can be easily correlated.
In this paper, we propose an inter-axialmodel - a two-layer stacked

2-D CNN with convolutional layers comprising of 8 and 16 filters
each and a receptive field of size 3x3. Each convolutional layer is
followed by a Batch Normalization and a Pooling layer of size (3x2).
This stacked network is followed by two Fully-Connected (FC) lay-
ers constituting 16 and 8 neurons each with Rectified Linear Unit
(ReLU) activations. TheDropout regularization technique is applied
after each Fully-Connected layer with a probability of 0.25. Nega-
tive log-likelihood (Softmax) probability estimations are used for
classification of activities.
The intra-axial patterns and inter-axial interactions together will

enable extensive analysis and modeling of activities. Using deep en-
sembles of the intra-axial variants with the inter-axial model provide
an all-encompassing and rich representation of the input signals.
In this work, we thus propose the following HARNet variants:
•HAR-CNet : {Conv-1D → Conv-2D}
•HAR-LNet : {LSTM → Conv-2D}
•HAR-LCNet : {LSTM → Conv-1D → Conv-2D}
Parametric optimization of convolutional filters and kernel size,

recurrent cells and FC neurons drastically reduces the memory and
time complexities. Significant reduction of such parameters in each
layer enables efficientmemorymanagement on a resource-constrain-
ed platform.We recursively prune themodel parameters to systemat-
ically arrive at the optimal proposed variants, while not compromis-
ing on recognition accuracy. Introducing Dropout between FC lay-
ers further reduces the number of parameters, thereby enabling suc-
cessful on-device training and deployment on constrained devices.

We formalize our ensembled deep model using the TensorFlow
module [1]. The network is trained with a learning rate of 2e−4 to
minimize the categorical cross-entropy loss (ρ) as shown below.

ρ = −
K∑

k=1

yi,k log(xi,k ) (1)

where x are the predictions, y are the target values, i denotes the
data points fromwa acrossK classes. This loss ρ is optimized during
back-propagation for each mini-batch using the Adam optimizer [9].

6 EXPERIMENTS AND RESULTS
The evaluation modes of HAR algorithms are crucial in quantify-
ing its extensibility and generalizability during real-world deploy-
ment. We evaluate the performance of our proposed models across
the three modes stated below.

•Mixed User Mode (MU )

This is one of the most commonly used evaluation modes in HAR.
In this mode, the whole dataset is split into stratified samples of 80%
train and 20% test data.

Figure 3: Sensor Minimization: A Comparative Analysis of Ac-
curacies for Accelerometer and Gyroscope

Sensor Minimization: We analyze the classification accuracies of
our model variants using data from different combinations of both
accelerometer and gyroscope. From Fig. 3, we observe that the ac-
curacies obtained when using data from both accelerometer and gy-
roscope do not significantly exceed those obtained by using just the
accelerometer data (∼ 1.5%). We thus perform sensor minimization
to address the challenge of On-Device Incremental Learning by for-
going data from gyroscope, which substantially reduces memory re-
quirements by 50% and computational cost for each input vector.
We hence use the data from accelerometer alone for further analysis
of our models.
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The results for mode MU on dataset DH are showcased in Table
2. We observe that HAR-LCNet outperforms the other two variants
in terms of accuracy and F1-score, as it exploits a combination of
recurrent and convolutional networks. Each recurrent unit preserves
the observed patterns in accelerometer data over time across each
axis by utilizing a common weight matrix W, which encapsulates
the diversity in instances of the same activity. Using convolutional
filters over these modeled sequences then provides a rich feature-set
from which the model can learn effectively.

Figure 4: Confusion Matrix for HARNet in ModeMU

Upon comparingHAR-LCNetwith the next-best performingmod-
el HAR-CNet, we observe that HAR-CNet is ∼7x faster than HAR-
LCNet in terms of inference time per sample, with a ∼1% difference
in accuracy and F1-score. Considering the resource-constrained na-
ture of mobile/embedded platforms, we narrow down to HAR-CNet
as our final ensembled deep framework - HARNet, which gives
high accuracy with least classification time. The confusion matrix
of HARNet is shown in Figure 4. Majority of the misclassification
occurs between the classes : ’StairsUp’, ’StairsDown’ and ’Walk-
ing’, which can be attributed due to the lack of orientation details of
the smartphone, that is traditionally captured by the gyroscope.

•Device Independent Mode (DI )

This mode aims at evaluating the model’s performance across var-
ious devices, thereby reflecting its capability to deal with various
mobile-sensing heterogeneities when deployed in a real-world sce-
nario. A stratified k-fold cross validation technique is employed for
a Leave-One-Device-Out approach. The average accuracy and F1-
score obtained are 89.5% and 0.887 respectively. Figure 5 illustrates
the accuracy of our model across devices, thereby showcasing its
generalizing capabilities.

•User Independent Mode (UI )

In this mode, we attempt to classify activities performed by a previ-
ously unseen user through the Leave-One-User-Out approach. This
mode hence provides a strong measurement of generalizability of
the model across diverse users. A similar cross validation technique
as mentioned above is used. Testing in this mode yields an F1-score
of 0.80 using the accelerometer data alone which is higher than the
F1-scores presented in [20] and [17], which use data from both ac-
celerometer and gyroscope.
We analyze the relation between the number of epochs and clas-

sification accuracies for two specific users: ‘b’ and ‘c’, for whom
the best and least accuracy are observed. We can infer that user ‘b’

Figure 5: Mode DI : Comparative Analysis of Accuracies across
various devices

Figure 6:ModeUI : Comparative Analysis of Accuracies vs num-
ber of Epochs for Users ‘a’ through ‘i’

performs activities similar to the general trend as high accuracy is
observed for the same. However, user ‘c’ achieves least accuracy
which can be attributed to the user’s unique physical build, posture
and execution of activities. It is evident from Figure 6 that even
though the number of epochs is increased during training phase, the
model does not yield better accuracies for user ‘c’. To enhance the ef-
ficiencies of such users, the model should adapt to the user’s unique
behavioral pattern. We hence perform Incremental Learning by us-
ing a portion of the data from the unseen test user to update the
weights of the previously trained model, thereby adapting to even
the least-performing users.

7 ON-LINE INCREMENTAL LEARNING
We experiment user-based Incremental Learning using HARNet for
the users ‘b’ and ‘c’ by deploying the system on a Raspberry Pi 3
Model B. The model is initially trained in modeUI , and the trained
weights and parameters are stocked on Raspberry Pi. The portion of
the unseen user data included for Incremental Learning is governed
by the adaption factor λ. We first assign λ=0.25 for both users and
observe the accuracy change. As shown in Figure 7, the accuracies
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of the users increased after performing Incremental Learning, partic-
ularly for user ‘c’, where there is a substantial increase in accuracy
of ∼35%.

Figure 7: Incremental Learning for User with Best and Least
Accuracy

When there is an influx of a stream of data (λ increases) for a
particular user, the model adapts itself well to the user’s behavioral
pattern, thus leading to higher accuracies. Table 3 illustrates the time
taken for preprocessing and testing phases per activity window on
the Raspberry Pi. The user-based incremental learning on Raspberry
Pi takes 3 seconds per epoch. It is evident that inference time per
activity windowwa is attributed to the size of the model (∼0.5 MB).
Furthermore, the time taken for preprocessing and testing together
ensures the computational viability of the proposed methodology on
embedded and mobile platforms.

Table 3: Time taken for Execution per activity window (wa )

Process Computational Time
Inference time 17 ms

Discrete Wavelet Transform 0.5 ms
Decimation 4.8 ms

8 CONCLUSION
In this paper, we proposed HARNet - a Deep Learning framework
with capabilities to handle various mobile-sensing and user-based
heterogeneities while being resource-friendly on low-cost embed-
ded and mobile platforms. By systematically optimizing the data
preprocessing and model design phases, we were able to achieve re-
markable accuracies using HARNet, which has a size of ∼0.5 MB.
Thus, the authors were able to perform Incremental Learning on
Raspberry Pi 3 to facilitate User Adaptability, which proves benefi-
cial for anomalous users. Notably, an increase in accuracy of ∼35%
was achieved signifying the feasibility ofHARNet on embedded and
mobile devices.

9 ACKNOWLEDGEMENT
The authors would like to thank Solarillion Foundation for its sup-
port and funding of the research work carried out.

REFERENCES
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., et al. Tensorflow: Large-scale machine

learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467
(2016).

[2] Borovykh, A., Bohte, S., and Oosterlee, C. W. Conditional time series forecasting
with convolutional neural networks. arXiv preprint arXiv:1703.04691 (2017).

[3] Buttussi, F., and Chittaro, L. Mopet: A context-aware and user-adaptive wearable
system for fitness training. Artif. Intell. Med. 42, 2 (Feb. 2008), 153–163.

[4] Guan, Y., and Plötz, T. Ensembles of deep lstm learners for activity recognition
using wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 2
(June 2017), 11:1–11:28.

[5] Hammerla, N. Y., Halloran, S., and Plötz, T. Deep, convolutional, and recur-
rent models for human activity recognition using wearables. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence (2016),
IJCAI’16, AAAI Press, pp. 1533–1540.

[6] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural Comput. 9,
8 (Nov. 1997), 1735–1780.

[7] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning - Volume
37 (2015), ICML’15, JMLR.org, pp. 448–456.

[8] Jiang, W., and Yin, Z. Human activity recognition using wearable sensors by
deep convolutional neural networks. In Proceedings of the 23rd ACM Interna-
tional Conference on Multimedia (New York, NY, USA, 2015), MM ’15, ACM,
pp. 1307–1310.

[9] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[10] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with
deep convolutional neural networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1 (USA, 2012),
NIPS’12, Curran Associates Inc., pp. 1097–1105.

[11] Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C. J., and Robert,
P. Ambulatory system for human motion analysis using a kinematic sensor: mon-
itoring of daily physical activity in the elderly. IEEE Transactions on Biomedical
Engineering 50, 6 (June 2003), 711–723.

[12] Ordóñez, F. J., and Roggen, D. Deep convolutional and lstm recurrent neural
networks for multimodal wearable activity recognition. Sensors 16, 1 (2016).

[13] Radu, V., Lane, N. D., Bhattacharya, S., Mascolo, C., Marina, M. K., and Kawsar,
F. Towards multimodal deep learning for activity recognition on mobile devices.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct (New York, NY, USA, 2016), UbiComp ’16,
ACM, pp. 185–188.

[14] Ravi, D., Wong, C., Lo, B., and Yang, G. Z. Deep learning for human activity
recognition: A resource efficient implementation on low-power devices. In 2016
IEEE 13th International Conference on Wearable and Implantable Body Sensor
Networks (BSN) (June 2016), pp. 71–76.

[15] Ronao, C. A., andCho, S.-B. Human activity recognitionwith smartphone sensors
using deep learning neural networks. Expert Syst. Appl. 59, C (Oct. 2016), 235–
244.

[16] Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., and Havinga, P. J. M. Fusion
of smartphone motion sensors for physical activity recognition. Sensors 14, 6
(2014), 10146–10176.

[17] Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjærgaard, M. B., Dey,
A., Sonne, T., and Jensen, M. M. Smart devices are different: Assessing and
mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings
of the 13th ACMConference on Embedded Networked Sensor Systems (NewYork,
NY, USA, 2015), SenSys ’15, ACM, pp. 127–140.

[18] Wang, J., Chen, Y., Hao, S., Peng, X., and Hu, L. Deep learning for sensor-based
activity recognition: A survey. arXiv preprint arXiv:1707.03502 (2017).

[19] Yao, S., Hu, S., Zhao, Y., Zhang, A., and Abdelzaher, T. Deepsense: A uni-
fied deep learning framework for time-series mobile sensing data processing. In
Proceedings of the 26th International Conference on World Wide Web (Republic
and Canton of Geneva, Switzerland, 2017), WWW ’17, International WorldWide
Web Conferences Steering Committee, pp. 351–360.

[20] Yao, S., Zhao, Y., Shao, H., Zhang, A., Zhang, C., Li, S., and Abdelzaher, T.
Rdeepsense: Reliable deep mobile computing models with uncertainty estima-
tions. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 4 (Jan. 2018),
173:1–173:26.


	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Dataset Preprocessing
	4.1 Windowing and Decimation
	4.2 Discrete Wavelet Transform

	5 MODEL
	6 Experiments and Results
	7 On-line Incremental Learning
	8 Conclusion
	9 Acknowledgement
	References

