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Abstract—Non-Intrusive Load Monitoring (NILM) is a method
for disaggregation of energy consumption of individual appliances
in a household. This involves the classification of individual appli-
ances, for which a number of electrical features in combination
with machine learning algorithms have been used. Extraction of
most of these features is a computationally demanding task, and
use of complex machine learning algorithms further adds to this
complexity. Although solutions to this problem exist, they tend
to be expensive and unaffordable to consumers in developing
countries. This necessitates a need for an inexpensive solution
capable of running on low-cost embedded platforms. In this
paper, the authors implement a machine learning approach on
an embedded platform to address this problem using current-
based features for device classification. The model was evaluated
using the Building-Level fUlly-labeled dataset for Electricity
Disaggregation (BLUED) which contains electrical measurements
for a household in the US for one week. The classifier was trained
on Raspberry Pi 3 in about 4 seconds and classification of an
event was performed in under 400 ms, validating the feasibility
of the classification model on such a platform.
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I. INTRODUCTION

Rapid development in technology in the last decade has led
to an increase in the number of appliances used in a household.
This has raised energy consumption [1], resulting in a need for
monitoring the energy usage of individual appliances. Non-
Intrusive Load Monitoring (NILM), introduced by Hart [2],
aims to solve this problem with minimal intervention in exist-
ing electrical systems. Since then, researchers in NILM have
proposed several algorithms [3] to address this problem, but
due to high computational complexity, they require expensive
hardware for commercial deployment which is unaffordable by
consumers in developing countries. In this paper, the authors
present a feasible and computationally less intensive event-
classifier model that can be used to build a low-cost NILM
system.

II. RELATED WORK

Since the origin of NILM in 1980s, many NILM algorithms
have been developed with the help of conspicuous patterns,

signatures and various parameters such as power, harmonics
etc., of different appliances which aided in modelling them.
These NILM algorithms used either macroscopic features (eg.
real and reactive power), which can be extracted using a
low sampling hardware, or, microscopic features (eg. transient
power, harmonics etc), which need a relatively high sampling
hardware [4].

Traditionally, NILM approaches are classified into event
based and non-event based methods [5]. The event based
method performs classification and disaggregation following
the detection of an event as opposed to its non-event coun-
terpart, which takes into account every sampled data point in
the aggregate signal for classification. NILM algorithms have
been developed and tested by researchers on custom datasets
or publicly available datasets, or a combination of both for
this purpose.

Duarte et al. used continuous wavelet transform for mapping
the transient signal to time frequency plane and the features
are extracted for training the Support Vector Machine [6].
Anderson et al. proposed an event detection algorithm in which
the prediction is done based on a score function which is the
combination of four different metrics employed [7].

Patri et al. have used time series shapelets in the context of
NILM in which classification is performed using a decision
tree classifier based on Euclidean distance and has given
appreciable results [8]. However, these results were presented
only for groups of appliances rather than individual appliances.
Srinivasan et al. proposed a current peak based approach for
NILM, which is less computationally intensive, thus bringing
NILM to a simple embedded platform [9]. But as this was
tested on a custom dataset with only 5 appliances and also
due to limitations posed by the algorithm with increase in
number of appliances, the generalisation of this concept on a
real time system becomes uncertain.

In this paper, the authors use machine learning to lever-
age the concept of current peaks on an embedded platform
and analyse its feasibility on the much larger and real time
Building-Level fUlly-labeled dataset for Electricity Disaggre-
gation (BLUED) [10].



Fig. 1. Aggregate current data extracted using the 1.5 second window for an
event of refrigerator (device label: 111)

Fig. 2. Device Current Signature (DCS) obtained from the aggregate currrent
data shown in Fig.1

III. PROBLEM STATEMENT

The increase in energy consumption and cost has spurred a
need for efficient and low-cost load monitoring systems that
can be made affordable to all consumers. Such a system should
also be able to handle all the devices present in a typical
modern household. Therefore, the authors propose an approach
which is applicable to a low-cost embedded platform.

IV. DATASET

The BLUED dataset contains the aggregate voltage and
current measurements sampled at a frequency (fs) of 12 kHz
for Phases A and B of a residential household in the US for
a week. Around fifty appliances were monitored and each
state transition in any appliance in the household is termed
as an event. The dataset contains 904 events in Phase A,
and 1,578 events in Phase B. Each event in both phases
A and B is labeled with a timestamp and corresponding
appliance number. However, the sources of certain events
were unknown, and have been labeled as such. As this paper

TABLE I
F1-SCORES FOR VARYING DCS LENGTHS (ALL EVENTS CONSIDERED)

DCS Length F1-score
Phase A Phase B

5 0.856 0.703
4 0.857 0.694
3 0.861 0.690
2 0.866 0.692
1 0.874 0.704

TABLE II
CONFUSION MATRIX FOR CLASSIFICATION OF PHASE A DEVICE EVENTS;

YELLOW: ACTUAL DEVICE, GRAY: CLASSFIED DEVICE, GREEN:
CORRECT CLASSIFICATIONS, RED: FALSE POSITIVES.

Device Labels 108 111 132 147 148 156 158 207
108 2 0 0 0 0 0 1 0
111 0 164 0 0 0 1 0 0
132 0 0 2 0 0 0 0 0
147 0 0 0 0 0 1 0 0
148 0 2 0 0 0 0 0 0
156 0 4 0 0 0 21 0 0
158 0 0 0 0 0 1 4 0
207 0 0 0 1 0 1 0 0

focuses on classification of devices, these unknown devices
were removed. Simultaneously occurring events were also
removed for the reasons mentioned in section V-B. After the
removal of all these events, there were 820 events for 8 devices
in Phase A, and 1436 events for 23 devices in Phase B. The
timestamps and labels for these events provide the necessary
ground truth for the evaluation of the proposed classification
model.

V. FEATURE EXTRACTION

A. Current Peaks

The features are extracted from the aggregate current data
for events considered in the dataset. The 60 Hz signal sampled
at 12 kHz results in 200 data points in each current and voltage
cycle. Let C be set of all the 200 data points in any given
current cycle. The current peak, p, for the cycle is extracted
using equation (1).

p = x : x ≥ y ∀ y ∈ C (1)

B. Device Current Signature (DCS)

An event-extraction window is used, which extracts 0.5
seconds of data before the event and 1 second after. This
window interval was found to be optimal, as discussed in
section V-C. For the sampling frequency used, 0.5 and 1
second intervals - represented by ta and tb - consist of 6000
and 12000 data points respectively. Fig. 1 represents the
plotted data extracted using the 1.5 second event-extraction
window. Let ns and nt be the number of cycles in 0.5 and
1 second interval respectively. We define A as the set of all
current peak values from the 0.5 second interval, as described
in equation (2).



TABLE III
CONFUSION MATRIX FOR CLASSIFICATION OF PHASE B DEVICE EVENTS; YELLOW: ACTUAL DEVICE, GRAY: CLASSFIED DEVICE, GREEN: CORRECT

CLASSIFICATIONS, RED: FALSE POSITIVES.

Device Labels 103 112 118 120 123 128 129 131 134 135 140 149 150 151 152 153 155 157 159 204 209 210 211
103 1 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 2 0
112 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
118 0 0 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
123 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 1 0 11 0 0 0 0 2 0 0 1 0 0 2 0 2 0 0 0 0
129 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 1 0 0 0 0 0 0 30 1 0 0 1 0 0 0 2 1 0 0 2
149 0 0 0 0 0 1 0 0 0 0 1 6 0 1 0 0 1 0 0 0 0 0 3
150 0 0 0 0 0 1 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0
151 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1
152 0 0 0 0 0 0 0 0 0 0 1 0 0 0 14 0 1 0 0 0 0 0 0
153 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
155 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 7 1 0 0 0 0 0
157 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 4 1 0 0 0 0
159 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 8 0 0 0 0
204 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0
209 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 4
210 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 19 0
211 0 0 0 0 0 0 1 0 0 0 2 1 1 0 1 0 0 1 0 0 0 0 90

TABLE IV
STRATIFIED K-FOLD CROSS-VALIDATION SCORES FOR THE FIVE

ALGORITHMS CONSIDERED

Classifier Phase A Phase B
Decision Trees 0.875 0.701
SVM 0.826 0.533
k-NN 0.908 0.698
Random Forests 0.929 0.778
Extra-Trees 0.946 0.801

A = p ∈ Ci ∀ i ∈ [1, ns]

where, ns =
fs ∗ ta
n(C)

= 30
(2)

Similarly, B is defined as the set of all current peak values
from the 1 second interval, as described in equation (3).

B = p ∈ Cj ∀ j ∈ (ns, ns + nt]

where, nt =
fs ∗ tb
n(C)

= 60
(3)

Thus, A will contain 30 current peaks and B will contain 60
current peaks. Since the absolute values of the current peaks
for a given state transition are contingent on the previously
occurred events, only the relative magnitudes of current peaks
have been used to extract the final set of features. In order
to obtain the relative magnitude of the current peaks in set B
with respect to set A, the mean steady-state peak current, p̄,
of set A is obtained first using equation (4).

p̄ =
1

30

30∑
i=1

αi ∀ αi ∈ A (4)

Then, we define the Device Current Signature (DCS) as the
set ∆ in equation (5).

∆ = x− p̄ ∀ x ∈ B (5)

The DCS is the set of features used in this paper to train the
classifier. Fig. 2 shows the DCS extracted from set B using (5).
The DCS of simultaneously occurring events overlap, which
violates the distinctive nature of DCS. Therefore, such events
have not been considered.

C. Feature Size

The BLUED dataset defines an event to last atleast 5
seconds, which contains 60000 current data points, i.e., 300
current peaks. Initially a feature size of 300 was considered,
but to find the optimal size of feature set, the DCS size was
decreased gradually and the f1-score was found to be similar
for time intervals greater than 1 second as shown in Table I.
For time intervals less than 1 second, a part of the transient
state was not captured for certain events and considering that
the transients last in the order of milliseconds, a 1 second
window was found to be sufficient to capture both the transient
and steady state signatures. Hence the optimal time interval
required for the extraction of features was found to be 1 second
or equivalently 60 current peaks.

VI. EXPERIMENT

Five classifiers were initially evaluated based on cross vali-
dation scores using stratified k-fold cross validation technique.
As can be observed from Table IV, Random Forests and
Extremely Randomized Trees (Extra-Trees) perform signif-
icantly better than the others, with Extra-Trees performing
the best. Also, Extra-Trees as proposed by Guerts et al.
[11], has been proven to be computationally more efficient,
and hence was selected over Random Forests. The model
was then implemented on a Raspberry Pi 3, which gave a
training time of 4.15 seconds and classification of each event
was performed in 0.4 seconds on average, validating that the



TABLE V
PRECISION, RECALL AND F1-SCORES FOR THREE DEVICES IN PHASES A

AND B

Phase A Phase B
Device Labels 108 111 132 211 129 140
Precision 1.000 0.946 1.000 0.924 1.000 0.625
Recall 0.750 0.995 1.000 0.948 0.917 0.814
f1-score 0.857 0.969 1.000 0.936 0.956 0.707

classification model is capable of running on a low-cost single-
board computer in reasonable time. The results obtained on
Raspberry Pi 3 are given in section VII.

VII. RESULTS

To analyze the performance of the proposed model, the
classification metric of f1-score was used. The model was
evaluated on BLUED using 75% of data for training and 25%
for testing.

A. Classification of devices

Phase A: Table II shows the confusion matrix for Phase
A. It contains 8 devices, of which refrigerator (device label:
111) has the most number of event occurrences, which is
significantly larger than the others. This non-uniformity in the
number of events for different devices can be attributed to the
real-time nature of the dataset. Therefore, it can be observed
that the devices with very few events have low classification
rates, but since the total number of devices connected to Phase
A is comparatively less than Phase B, the overall f1-score of
the Phase A is higher.

Phase B: As can be seen from Table III, there are a total
of 23 devices in Phase B, and the distribution of number of
events for each of the devices is more uniform than Phase A.
It was observed that this increase in the number of devices
made the occurrences of events more concentrated at some
particular intervals of time than others, which could prove to
be detrimental to the overall performance. This was overcome
due to relatively small size of the window used for extraction
of features.

Patri et al have also used BLUED, but grouped devices
into classes before performing device classification, with ac-
curacies of 83.75% for classes in Phase A and 77.92% for
classes in Phase B. The model proposed in this paper performs
classification for individual appliances, with accuracies of 94%
and 80% respectively.

Table V shows 3 devices in both Phases A and B with
their f1-scores. The overall f1-scores for Phases A and B are
given in Table VI. As classification is performed for individual
devices, different types of lights - for example, office lights
(device label: 149), hallway lights (device label: 152) and
basement lights (device label: 159) - which belong to the
same class can be satisfactorily classified at most times. This
leads to the inference that current peaks can also be used in
distinguishing similar appliances in a household.

TABLE VI
OVERALL F1-SCORES FOR PHASE A AND PHASE B

Phase Precision Recall F1-score
A 0.9228 0.9415 0.9315
B 0.8023 0.7939 0.7889

VIII. CONCLUSION

The authors have implemented a machine learning approach
for classification of devices in a modern household. The
classification model gave overall f1-scores of 0.93 for Phase A
and 0.79 for Phase B. The use of current peaks as features for
classification of devices was validated and was also found to
be feasible for a real-time scenario on an embedded platform.
While the Raspberry Pi 3 (35 USD) may not be ideal for
a low-cost system, the authors believe that it is the first
step in making NILM affordable to consumers in developing
countries, and with minor modifications, the classification
model can be run on a Raspberry Pi Zero (5 USD), further
reducing the cost and making it a more feasible option.
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